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Application:
Sketch Enhancement



Application:
Reducing Fluoroscopic Exposures

[Viergever et al]



Application:

Finding Roads and Rivers
in Satellite Imagery



Images with Contours

Local edge & line measurements



Original (No corruption) With Blur and Noise



Original (No corruption) With Blur and Noise

Canny Edges:

σ = 1 σ = 1.5 σ = 2



Goal: Sketch Inference

Fusion of Differential Geometry and Random Fields

by Eliminating Curve Parameterization



Goal: Sketch Inference

Fusion of Differential Geometry and Random Fields

by Eliminating Curve Parameterization

Outline

• Background

• Direction Process

• The Curve Indicator Random Field + All Cumulants

• Empirical Edge Statistics



• Curvature Process and Euler Spirals

• Volterra Filters and Partial Differential Equations

for Enhancing Curve Images



Inference for a Single Contour

• Dynamic programming [Montanari ’71; Sha’ashu & Ullman ’88]

• Heuristic search [Martelli ’76]

• Bayesian [Geman & Jedynak ’96, Yuille & Coughlan ’00]



Inference for Multiple Contours

• Local edge detection + linking (non-contextual)

• Context via local interactions:

– MRFs [Geman & Geman; Marroquin]

– Energy-based [Mumford& Shah, Nitzberg et al, Williams]

– Dictionary-based relaxation labeling [Hancock et al]

– Relaxation labeling with co-circularity

[Zucker,Parent,Iverson]

• Explicit parameterizations and MCMC simulation [Zhu et al]



Images with Contours

Sketch Realizations



Inferring a Sketch

Ui = underlying random field (ideal sketch)

(“indicates” curve at i = (x, y, θ))

Mi = measurement random field

(corrupted form of Ui, i.e., from local edge operator,

e.g. image gradient)
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Inferring a Sketch

Ui = underlying random field (ideal sketch)

(“indicates” curve at i = (x, y, θ))

Mi = measurement random field

(corrupted form of Ui, i.e., from local edge operator,

e.g. image gradient)

Goal: Estimate Ui given Mi.

Posterior: � (U |M) ∝ � (M |U) � (U)

Likelihood � (M |U): corruption model (noise and blur)

Prior probability � (U) “bias” to overcome uncertainty

What’s a prior for sketches?



Filtering

Linear Filters: Model: M = blur(U) + noise

Linear minimum mean square error estimate:

Requires second moments of U .

Quadratic and Higher-Order Filters:

Require higher moments of U .

Where do the moments come from?



Approach to Sketch Inference

][
t L0

Rt

→ → → Moments

Random
parameterization

t 7→ Rt

Random set
{Rt : t ∈ [0, L]}

Random indicator
“Curve indicator
random field” U

(Unknown sketch)

Sketch
Filters

Eliminate curve parameterization by accumulating “ink”



Differential Geometry of Planar Curves

Curve with parameter s ∈ � : C : s 7→ C(s) = (x(s), y(s)) ∈ � 2

Tangent vector = T = C ′

||C ′||
,

where C ′ = (dx
ds

,
dy
ds

)

Normal vector = N = rotate90◦T

Direction = θ: T = (cos θ, sin θ)

Curvature κ = dθ
ds

1/κ θ

C(s)

ΤΝ



A Markov Process with Direction

Lift of curve: t 7→ Rt = (x, y, θ)

[
]

0

L

t Rt

θ

x
y



A Markov Process with Direction

Lift of curve: t 7→ Rt = (x, y, θ)

[
]

0

L

t Rt

θ

x
y

Mumford’s process with direction:

ẋ = cos θ ẏ = sin θ θ̇ = noise

Developed by Williams, Jacobs, Thornber,

Zweck.

Approximate continuous

space discretely: i = (x, y, θ)

Green’s function G = (gij)

gij =





time spent in j

given process

started in i



Curve Indicator Random Field

Discrete-space Markov process Rt = i = (x, y, θ), t ∈ [0, L]

Random length L ∼ exponential(α−1)

Key intuition: Let Vi ≈

{
1, if i is on the curve
0, otherwise



Curve Indicator Random Field

Discrete-space Markov process Rt = i = (x, y, θ), t ∈ [0, L]

Random length L ∼ exponential(α−1)

Key intuition: Let Vi ≈

{
1, if i is on the curve
0, otherwise

1{condition} =

{
1, if condition true
0, otherwise

Definition: Curve indicator random field (1 curve):

Vi :=

∫ L

0
1{Rt = i}dt

= time spent by curve at position i = (x, y, θ)



Curve Interactions

How are crossings represented?

Using parameterization:

- must check all t1, t2 whether Rt1 = Rt2

- global computation

Using CIRF:

- ink buildup occurs at crossings

- local computation: U2
i



Theoretical Result:

All Joint Moments
of the Curve Indicator Random Field

Claim (Single curve case):

Positions i1, . . . , ik ∈ {(x, y, θ)}

� [Vi1 · · ·Vik
] ∝

∑
gj1j2 · · · gjk−1jk

Sum over permutations j1, · · · , jk

of i1, · · · , ik
gij =

{
time spent in j
given process
started in i

Sum over all moments gives Feynman-Kac formula.



A Sketch with Multiple Curves

Random number N of i.i.d. Markov processes R
(1)
t , . . . , R

(N )
t ∼ Rt

Independent random lengths L1, · · · , LN ∼ L

Take superposition of i.i.d. 1-curve CIRFs:

Definition: Curve indicator random field (multiple curves):

Ui :=
N∑

n=1

∫ L

0
1{R(n)

t = i}dt

Claim: cumulant{Ui1, . . . , Uik
} ∝

∑
gj1j2 · · · gjk−1jk

Sum over permutations j1, · · · , jk of positions i1, · · · , ik

Corollary: The curve indicator random field is non-Gaussian.



Covariance of Curve Indicator Random Field

cov(Ui, Uj) ∝ [gij + gji]

= gij (forward)

+ gji (backward)

=

(Integrated over θ for display)



Covariance of

Curve Indicator Random Field

t 7→ Rt = (x, y, θ)

[ ]
0 Lt

θ

y

x
Rt

“Ideal” edge correlations

with horizontal edge at center:

θ = 45◦

θ = 22.5◦

θ = 0◦

θ = −22.5◦

θ = −45◦



Edge Correlations

Observed in Images

Original
image

θ = 22.5◦

θ = 0◦

θ = −22.5◦



The Need for Curvature

Edge correlations (integrated over θ)



The Benefit of Curvature

a
b

c

d

Curvature “tunes” search window



A Markov Process with Curvature

Lift with curvature: t 7→ Rt = (x, y, θ, κ)(t)

Brownian motion in curvature:

ẋ = cos θ ẏ = sin θ θ̇ = κ κ̇ = noise

Most probable curve minimizes: α
∫

κ̇2 + β
∫

dt ↔ Euler spiral

Fokker-Plank diffusion: ∂p

∂t
= Qp, where Q := σ2

2
∂2

∂κ2 − cos θ ∂
∂x

− sin θ ∂
∂y

− κ ∂
∂θ

− α

Q: “killed” Markov process “generator”



A Markov Process with Curvature

Lift with curvature: t 7→ Rt = (x, y, θ, κ)(t)

Brownian motion in curvature:

ẋ = cos θ ẏ = sin θ θ̇ = κ κ̇ = noise

Most probable curve minimizes: α
∫

κ̇2 + β
∫

dt ↔ Euler spiral

Fokker-Plank diffusion: ∂p

∂t
= Qp, where Q := σ2

2
∂2

∂κ2 − cos θ ∂
∂x

− sin θ ∂
∂y

− κ ∂
∂θ

− α

Q: “killed” Markov process “generator”

Compare to direction process [Mumford]:

ẋ = cos θ ẏ = sin θ θ̇ = noise

Most probable curve minimizes: α
∫

κ2 + β
∫

dt ↔ Elastica

Fokker-Plank diffusion: ∂p

∂t
= Qp, where Q := σ2

2
∂2

∂θ2 − cos θ ∂
∂x

− sin θ ∂
∂y

− α



Sketches Compared

CIRF Samples With Direction Only



Sketches Compared

CIRF Samples With Direction Only

CIRF Samples Including Curvature



Curve Indicator Random Field Covariance with Curvature:

κ0: 0.2 0 -0.1



Moment Generating Functional

For (multi-curve) curve indicator random field U :

� exp(c, U) = exp(µ, N̄ (G(c) − G)ν),

where:

Q = killed Markov process generator (e.g., direction or curvature process)

G = −Q−1 = Green’s function

G(c) = −(Q + diag c)−1 = Green’s function biased by c

µ = initial weighting

ν = final weighting

N̄ = average number of curves

Observe: Linear system.



Minimum Mean-Square Estimation of the CIRF

Bayes estimate: ũ(m) = argminu � [loss(U, u)|m]

U = CIRF, m = measurements, loss = mean-square error.



Minimum Mean-Square Estimation of the CIRF

Bayes estimate: ũ(m) = argminu � [loss(U, u)|m]

U = CIRF, m = measurements, loss = mean-square error.

Goal:
Filter Output = Minimum mean square error estimate (MMSE) of U

= Posterior mean of CIRF U (given measurements m)

Likelihood:

Assume Gaussian white noise, blur B, Poisson number of curves.



High-noise MMSE CIRF Volterra Filters

Assume no blur and white Gaussian noise, variance σ2
N = ε−1.

High-noise limit: Take Taylor expansion of log normalizing constant

of posterior around ε = 0. (ζ = constant)

Low contour density η assumption.

ũ(1) = η{1 − 2εζ + ε(Gm + G∗m)}

ũ(2) = η{1 − 2εζ + 3ε2ζ2 + ε(1 − 2εζ)(Gm + G∗m)

+ε2(G diagm Gm + Gm � G∗m + G∗ diagm G∗m)}

ũ(3) = η{1 − 2εζ + 3ε2ζ2 − 4ε3ζ3

+ε(1 − 2εζ + 3ε2ζ2)(Gm + G∗m)

+ε2(1 − 2εζ)(G diagm Gm + Gm � G∗m + G∗ diagm G∗m)

+ε3(G diagm G diagm Gm + G diagm Gm � G∗m

+Gm � G∗ diagm G∗m + G∗ diagm G∗ diagm G∗m)}



Self-Avoiding Curves
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Plane with Orientation, (x,y,theta)
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- Derivation based on diagrams similar to Feynman diagrams

G

r i

G G

i

* *

r j r i {j,k}
a: b: c:

- Many diagrams produce negligible terms due to self-avoidance



MMSE CIRF Filtering via Nonlinear PDEs

Assume Gaussian white noise, blur B, Poisson number of curves.

Goal:

Filter Output = Posterior mean of CIRF U (given measurements M)

Exact prior + approximate likelihood

→ biased CIRF approximation of posterior mean:

(Q + diag d) f = const Forward PDE

(Q∗ + diag d) b = const Backward PDE

d = εB∗(M − B(f � b))

Filter Outputi = fi bi ≈ � MUi

Q = killed Markov process generator

– Reaction-diffusion-convection equation



Effect of Filters in (x, y, θ)

∞

3.4 dB

Peak snr Image
Gradient
magnitude

Logical/linear
response

Linear
CIRF filter

Cubic
CIRF filter

Nonlinear CIRF PDE filter: Noise Result

(Result is function of (x, y, θ). Integrated over θ for display.)



Pick Up Sticks

0◦ 45◦ 90◦ 135◦





Original (No corruption) With Blur and Noise

Thresholding of Filter Output

Canny:

σ = 1 σ = 1.5 σ = 2



Original

Linear

Quadratic

Cubic

Filter Response Thresholding



Finding a Ship’s Wake

Image
Local

Responses
Linear Cubic



Finding a Surgical Guide Wire

Local
Responses

Linear Quadratic Cubic



Original

Direction CIRF

Curvature CIRF

Filtering with Curvature

Direction CIRF Output (x, y, θ)

κ > 0

κ = 0

κ < 0

Curvature CIRF Output (x, y, θ, κ)

θ : 0◦ 90◦ 180◦ 270◦



Filtering an Euler Spiral

Original Direction CIRF Curvature CIRF
Filtered Filtered



Prostate Enhancement

Original Edges before Edges after
cubic CIRF filter



Conclusions

• Differential Geometry: Stochastic Model of Contour Curvature

• Inference: Posterior Mean Filter using nonlinear PDEs

• Curve Indicator Random Field as:

– Sketch (Ideal Edge Map)

– Abstraction for Eliminating Curve Parameterization


